THE FILE COPY

OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0043

TECHNICAL REPORT No. 104

Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model

by

Xiao-shen Li, D. L. Lin and Thomas F. George

Prepared for Publication

in

Physical Review A

Departments of Chemistry and Physics State University of New York at Buffalo Buffalo, New York 14260

June 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM TO June 1989 15. PAGE COUNT June 1989 17 16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A	REPORT D	N PAGE			Approved No. 0704-0188			
Unclassified 28. DECLASSIFICATION AUTHORITY 29. DECLASSIFICATION JODOWNGADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/89/TR-104 59. MONITORING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/89/TR-104 50. MONITORING ORGANIZATION (**applicable**) To ADDRESS (City, State, and Zip Code) Chemistry Program SOO N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING INFORMATION SQUEEZING ORGANIZATION SQUEEZING ORGANIZATION SQUEEZING ORGANIZATION SQUEEZING ORGANIZATION SQUEEZING ORGANIZATION SQUEEZING ORGANIZATION PROGRAMM AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 130. TYPE OF REPORT 193. TIME COVERED FOR THE COMMENT OF	1a. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS						
Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/89/TR-104 5. MONITORING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/89/TR-104 6. ADMESS (City, State, and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260 6. ADMESS (City, State, and ZIP Code) Chemistry Program BO N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING NUMBERS CONTract NO0014-86-K-0043 800 N. Quincy Street Arlington, Virginia 22217 11. THIE (Include Security Cashifation) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM TO 14. DATE OF REPORT (1989) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) PRED GROUP SUB-GROUP JAYNES-CLUMPINOS MODEL NON-PHOTON PROCESS. TOURS JAYNES-CLUMPINOS MODEL NON-PHOTON PROCESS. TOURS JAYNES-CLUMPINOS MODEL NON-PHOTON PROCESS. TOURS JAYNES-CLUMPINOS MODEL NON-PHOTON PROCESS. ADMESS TRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.	Unclassified							
A. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUTFALO/DC/89/TR-104 58. NAME OF PERFORMING ORGANIZATION Depts. Chemistry & Physics State University of New York 6c. ADDRESS (City, State, and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260 8b. OFFICE SYMBOL (If applicable) Fronczak Hall, Amherst Campus Buffalo, New York 14260 8c. ADDRESS (City, State, and ZIP Code) Chemistry Program SOU N. Quincy Street Arlington, Virginia 22217 8c. ADDRESS (City, State, and ZIP Code) Chemistry Program SOU N. Quincy Street Chemistry Program SOU N. Quincy Street Re. ADDRESS (City, State, and ZIP Code) Chemistry Program SOU N. Quincy Street Arlington, Virginia 22217 11. TITLE (Include Securey Cassification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13b. TYPE OF REPORT FROM TO 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVANLABILITY OF ABSTRACT COUNTY CLASSIFICATION COLLEGE SYMBOL Chemistry Program Squeezing of the atomic dipole moment in the one-photon and two-photon Chemistry Program SQUEEZING COUNTY CLASSIFICATION COUNTY CLA	2a. SECURITY CLASSIFICATION AUTHORITY							
4. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/89/TR-104 5a. NAME OF PERFORMING ORGANIZATION Physics State University of New York 6c. ADDRESS (GN, State, and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260 7b. ADDRESS (GN, State, and ZIP Code) Thomas K, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 8b. OFFICE SYMBOL (If applicable) Office of Naval Research Contract N00014-86-K-0043 800 N. Quincy Street Arlington, Virginia 22217 11. TITLE (Include Securey Clearification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TYPE OF REPORT 13b. TIME COVERED FROM Prepared for publication in Physical Review A 17. COSATI CODES FIELD GROUP SUB-GROUP ATO 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM PREPARED FROM TO 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TWO PROCESS. ATOMIC DIPOLE HOMENT YEAR OF REPORT (Year, Month, Day) 15. PAGE COUNT TWO PROCESS. ATOMIC DIPOLE HOMENT SQUEEZING ON PROCESS. ATOMIC DIPOLE HOMENT SQUEEZING ON PROCESS. ATOMIC DIPOLE HOMENT Almost perfect squeezing is found in certain cases.	Ab occi accirication (polynical)		· · · · · · · · · · · · · · · · · · ·					
UBUFFALO/DC/89/TR-104 58. NAME OF PERCORNING OR/ANIZATION Depts. Chemistry 6 Physics State University of New York 6. ADDRESS (GN, Stee, and IP Code) Froncask Hall, Ambrest Campus Buffalo, New York 14260 70. ADDRESS (GN, Stee, and IP Code) Froncask Hall, Ambrest Campus Buffalo, New York 14260 80. N. Quincy Street Arlington, Virginia 22217 80. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research Office	28. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	[u	nlimited		
Sa. NAME OF PERFORMING OR(JANIZATION Depts. Chemistry & Physics State University of New York 6c. ADDRESS (Gry, State, and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260 8a. NAME OF FUNDING/SPONSORING ORGANIZATION ORGANIZATION OFFICE SYMBOL (If applicable) 8b. OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OF Naval Research ORGANIZATION OFFICE OF Naval Research ORGANIZATION OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE SYMBOL (If applicable) 8c. ADDRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ODRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 8c. ODRESS (Gry, State, and ZIP Code) OFFICE OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBER OFFICE OF FUNDING NUMBERS 10. SOURCE OF FUNDING NUMBERS 10. SOURCE OF FUNDING NUMBERS 11. DOUGHAMAN NO. INTERCENT NO. ACCESSION NO. ACCESS	4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NUMBER(S)		
Depts. Chemistry & Physics State University of New York 6. ADDRESS (City, State, and ZIP Code) Froncask Hall, Amherst Campus Buffalo, New York 14260 8. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research Office of Naval Research 8. ADDRESS (City, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING NUMBERS PROGRAM 800 N. Quincy Street Arlington, Virginia 22217 11. ITTLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHORIS) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM TO 14. DATE OF REPORT (ver, Month, Day) 15. PAGE COUNT FROM TO 16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL FROM TO 19. ADSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.	UBUFFALO/DC/89/TR-104							
State University of New York 66. ADDRESS (City, State, and ZIP Code) FFONCIAS Hall, Amherst Campus Buffalo, New York 14260 88. ADMRESS (City, State, and ZIP Code) FOROLAGAM HALL ORGANIZATION Office of Naval Research Off			7a. NAME OF MO	ONITORING ORGAN	NIZATION			
Fronzak Hall, Amberst Campus Buffalo, New York 14260 8a. NAME OF FUNDING/SPONSORING ORGANIZATION OFFICE SYMBOL (If applicable) OFFICE OF Naval Research 8c. ADDRESS (City, State, and ZIP Code) Chemistry Program 8d0 N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING NUMBERS Contract N00014-86-K-0043 8c. ADDRESS (City, State, and ZIP Code) Chemistry Program 8d0 N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING NUMBERS Contract N00014-86-K-0043 11. ITITLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHORIS) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL SQUEEZING 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFICATION Unclassification Unc		(іт арріісавіе)						
Buffalo, New York 14260 8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research 8c. ADDRESS (City, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract N00014-86-K-0043 10. SOURCE OF FUNDING NUMBERS Contract N00014-86-K-0043 11. ITITLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED FROM TO 14. DATE OF REPORT (Vest, Month, Day) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DITIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. DATE OF REPORT (Vest) 12. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. DISTRIBUTION/AVAILABILITY OF ABSTRACT DITIC USERS 22. NAME OF REPORT (Vest) 19. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. DISTRIBUTION/AVAILABILITY OF ABSTRACT DITIC USERS 22. NAME OF REPORT (Vest) 22. DETERPHONE (Include Area code) [22. OFFICE SYMBOL		<u></u> _						
Buffalo, New York 14260 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION OFfice of Naval Research Office of Naval Research Ba. ADDRESS(GN, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 Ba. NAME OF FUNDING /SPONSORING ORGANIZATION OFfice of Naval Research Ba. ADDRESS(GN, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 Ba. OFFICE SYMBOL (If applicable) OFFICE ORGANIZATION OFFICE SYMBOL	6c. ADDRESS (City, State, and ZIP Code)				iode)			
Arlington, Virginia 22217 8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research ("applicable") Office of Naval Research ("applicable") Office of Naval Research ("applicable") Contract NO0014-86-K-0043 8a. ADDRESS (ORG, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 11. TITLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM To 17 Dune 1989 17. COSATI CODE 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Prepared for publication in Physical Review A 17. COSATI CODE 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) PRODE NORTH SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.	•		•					
Sa. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research School (if applicable) Sprocurement instrument identification number Contract N00014-86-K-0043	Buffalo, New York 14260							
ORGANIZATION OFFICE OF Naval Research 8c. ADDRESS (Cfty, State, and Z/P Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 11. HTTLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT State of publication in Physical Review A 17. COSATI CODES FIELD FRED FRED FRED FRED FRED FRED FRED FRE	Re- NAME OF CUMPING (CRONGODING	Tot office systems						
Office of Naval Research 8c. ADDRESS (City, State, and ZIPCode) Chemistry Program 800 N. Quincy Street Arlington, Virginia 2217 11. TITLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM FROM TO 14. DATE OF REPORT (Vest, Month, Day) FROM TO 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD FROM FROM TO 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.	1 · · · · · · · · · · · · · · · · · · ·	•	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ACCESSION NO.	Office of Naval Research			Contract NOO	014-86 - K-00	43		
Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 11. TITLE (Include Security Classification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED FROM TO 14. DATE OF REPORT (Veer, Month, Day) 15. PAGE COUNT 17 16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL ONE-PHOTON PROCESS, ATOMIC DIPPOLE MOMENT, SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.		<u> </u>	10. SOURCE OF F	UNDING NUMBERS	5			
800 N. Quincy Street Arlington, Virginia 22217 11. TITLE (include Security Cassification) Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED								
Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13b. Time COVERED 13b. Time COVERED 14. DATE OF REPORT 17 17 17 18. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) JAYNES-CUMMINGS MODEL ONE-PHOTON PROCESS, ATOMIC DIPOLE MOMENT TWO-PHOTON PROCESS QUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL					NO.	ACCESSION NO.		
Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model 12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 17 16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) JAYNES-CUMMINGS MODEL ONE-PHOTON PROCESS, SQUEEZING OUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DTIC USERS Unclassified Unclassified Unclassified DTIC USERS Unclassified DTIC USERS DTIC USERS	Arlington, Virginia 22217		ļ.					
12. PERSONAL AUTHOR(S) Xiao-shen Li, D. L. Lin and Thomas F. George 13a. TYPE OF REPORT 13b. TIME COVERED	11. TITLE (Include Security Classification)							
Tigory State Course Course State Course State Course Course State Course State Course Course Course Course State Course Cours	Squeezing of Atomic Variable	es in the One-Ph	oton and Two	-Photon Jayn	es-Cummings	Model		
16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL ONE-PHOTON PROCESS, ATOMIC DIPOLE MOMENT, TWO-PHOTON PROCESS, SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. / Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DTIC USERS Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL	12. PERSONAL AUTHOR(S) Xiao-shen Li,	D. L. Lin and	Thomas F. Ge	orge				
Prepared for publication in Physical Review A 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL ATOMIC DIPOLE MOMENT, TWO-PHOTON PROCESS, SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SQUEEZING 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL					Day) 15. PAGE			
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP JAYNES-CUMMINGS MODEL ONE-PHOTON PROCESS, ATOMIC DIPOLE MOMENT, TWO-PHOTON PROCESS SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT SECURITY CLASSIFICATION SQUEEZING QUANTUM MECHANICAL STUDY 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SQUEEZING QUANTUM MECHANICAL STUDY 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. ABSTRACT SECURITY CLASSIFICATION Unclassified								
JAYNES-CUMMINGS MODEL ATOMIC DIPOLE MOMENT, TWO-PHOTON PROCESS, QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT JUNCLASSIFIED/UNILIMITED SAME AS RPT. □ DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL		cation in Physic	al Review A					
ATOMIC DIPOLE MOMENT, TWO-PHOTON PROCESS QUESTING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT JUNCLASSIFICATION Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL 22. NAME OF RESPONSIBLE INDIVIDUAL	17. COSATI CODES	18. SUBJECT TERMS (Continue on revers					
SQUEEZING QUANTUM MECHANICAL STUDY 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT Unclassified/UNCLASSIFIED/UNLIMITED SAME AS RPT. DITIC USERS DTIC USERS DTIC USERS 19. ABSTRACT SECURITY CLASSIFICATION Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 222. OFFICE SYMBOL	FIELD GROUP SUB-GROUP							
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT Unclassified/UNICLASSIFIED/UNLIMITED SAME AS RPT. DIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL			MOMENT					
Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 222. NAME OF RESPONSIBLE INDIVIDUAL	19. ABSTRACT (Continue on reverse if necessary and identify by block number)							
Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 222. NAME OF RESPONSIBLE INDIVIDUAL	Courseles of the sta				**** abatan			
Almost perfect squeezing is found in certain cases. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	Squeezing of the ato	omic dipore mome	nt in the on	e-photon and	two-photon			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	Jaynes-Cummings model is investigated with different initial conditions.							
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	Almost perfect squeezing is found in certain cases.							
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	``							
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS ☐ Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS ☐ Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL								
I		RPT. DTIC USERS						
Dr. David L. Nelson (202) 696-4410			B		22c. OFFICE SY	MBOL		
	Dr. David L. Nelson		(202) 696-4	410	<u> </u>			

Physical Review A, in press

Squeezing of atomic variables in the one-photon and two-photon

Jaynes-Cummings model

Xiao-shen Li
Center for Theoretical Physics
Chinese Center of Advanced Science and Technology (World Laboratory)
P. O. Box 8730
Beijing 100080, People's Republic of China

and

Shanghai Institute of Metallurgy Chinese Academy of Sciences Shanghai, People's Republic of China

D. L. Lin and Thomas F. George
Department of Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

Squeezing of the atomic dipole moment in the one-photon and two-photon Jaynes-Cummings model is investigated with different initial conditions. Almost perfect squeezing is found in certain cases.

PACS Numbers: 32.80.-t, 42.5.Kb

Acces	sion For	
NTIS DTIC Unann	GRA&I	
	ibution/	Codes
Dist	Avail an	d/or
A-1		

I. Introduction

It is by now well known that squeezed light has potential applications in low-noise communications and high-precision measurments involving light. 1,2 The Jaynes-Cummings (JC) model^{3,4} is one of the possible nonlinear optical models capable of creating squeezed states. A number of calculations of field squeezing have been made in recent years. In the standard JC model, the maximum field squeezing was found to be 20%, but in a recent paper it was argued that this squeezing could be 100%. When the initial coherent state of the field is replaced by the vacuum state, the maximum squeezing is increased to 25%. More squeezing is found in many other cases of the generalized JC model. The maximum squeezing is 42% for two-level two-photon, 8 57% for twolevel three-photon, 9 31% for three-level one-mode, 10 36% for four-level onemode, 11 and 52% for ten-level one-mode 12 cases. However, little attention has been paid to the squeezing of the atomic variables. The squeezing of the atomic dipole operators for a two-level atom driven by a classical field has been investigated. A general relation has been established between the coherent states of the SU(2) and SU(1,1) Lie algebra and possible reduction of fluctuations in angular momentum. 14 For the special case of a vacuum initial field mode, the relation between the atomic variable squeezing and the field squeezing has been examined. 15 Only recently, a quantum mechanical study devoted to the squeezing of the atomic dipole moment has been carried out, 10 where it is found that a maximum squeezing of 60% can be reached.

In this note we calculate the squeezing of the atomic dipole moment in the one-photon and two-photon JC model with different initial conditions. It is found that the atomic variables generally possess stronger squeezing than the field under the same conditions. In particular circumstances, a nearly pure squeezing state can be achieved. In the standard JC model, a one-mode cavity field with frequency Ω couples to a two-level atom through the well-known Hamiltonian in the rotating-wave approximation,

$$H = \frac{1}{2} \hbar \omega \sigma_3 + \hbar \Omega a^{\dagger} a + \hbar \lambda (a^{\dagger} \sigma^{-} + a \sigma^{+}) , \qquad (1)$$

where $a^{\dagger}(a)$ and Ω are the creation (annihilation) operator and frequency of the cavity field, respectively, and λ is the coupling constant. The two-level atom with transition frequency ω is described by the Pauli raising and lowering operators σ^{\pm} and the inversion operator $\sigma_3 = \sigma^+\sigma^- - \sigma^-\sigma^+$. The dispersive and absorptive components of the slowly-varying atomic dipole σ_3 can be written as

$$\sigma_1 = \frac{1}{2}(\sigma^+ e^{-i\omega t} + \sigma^- e^{i\omega t})$$
 (2)

and

$$\sigma_2 = \frac{1}{2i} (\sigma^+ e^{-i\omega t} - \sigma^- e^{i\omega t}) \quad , \tag{3}$$

respectively. They obey the commutation relation

$$[\sigma_1, \sigma_2] = \frac{i}{2} \sigma_3 \tag{4}$$

and the corresponding uncertainty relation

$$(\Delta \sigma_1)^2 (\Delta \sigma_2)^2 \ge \frac{1}{16} < \sigma_3 >^2$$
 (5)

The atomic state is said to be squeezed when σ_1 or σ_2 satisfies the relation

$$(\Delta \sigma_{i})^{2} < \frac{1}{4} |\langle \sigma_{3} \rangle|$$
 , $i = 1, 2$. (6)

Since

$$(\Delta\sigma_1)^2 = \frac{1}{4} - (\text{Re}\langle\sigma\rangle e^{i\omega t})^2$$
 (7a)

$$(\Delta\sigma_2)^2 = \frac{1}{4} - (\text{Im} < \sigma^- > e^{i\omega t})^2 , \qquad (7b)$$

the condition described by Eq. (6) can be rewritten as

$$S_1 = \frac{1 - 4(re < \sigma^- > e^{i\omega t})^2}{|<\sigma_3>|} < 1$$
 (8a)

or

$$s_2 = \frac{1 - 4(Im \langle \sigma^- \rangle e^{i\omega t})^2}{|\langle \sigma_3 \rangle|} < 1$$
 (8b)

for squeezing in the dispersive or absorptive component of the dipole. In what follows we shall investigate this squeezing effect by using different initial conditions for the atom and the cavity field.

II. Squeezing in the JC model

We denote by |+> and |-> the excited and ground states of the atom and by |n> the Fock states of the field. First we consider the initial condition

that the atom is in the excited state and the field in a two-photon coherent state or squeezed state, 1,2,18

$$|\alpha, r\rangle = \sum_{n} F(n)|n\rangle \tag{9}$$

$$F(n) = (n!\cosh r)^{\frac{1}{2}} \left(\frac{\beta}{2\cosh r}\right)^{n} Y^{-n} H_{n}(Y) \exp\left[-\frac{\beta^{2}}{2}(1 - \tanh r)\right] , (10)$$

where $\beta = \alpha e^{r}$ and $Y = \beta(2\cosh r \sinh r)^{-\frac{1}{2}}$, and we have chosen the squeezing parameter r to be real. ¹⁹ The initial mean photon number is given by $\bar{n} = |\alpha|^2 + \sinh^2 r$, so that the initial state vector for the atomic-field system can be written as

$$|\psi(0)\rangle = \sum_{n} F(n) |+, n\rangle . \qquad (11)$$

At a time t > 0, the state vector in the interaction picture is found from the JC model Hamiltonian (1) to be

$$|\psi(t)\rangle = \sum_{n} F(n) [A(n,t)|+,n\rangle + B(n+1,t)|-,n+1\rangle],$$
 (12)

where

$$A(n,t) = e^{-i\Delta t/2} \left(\cos\mu t + i\frac{\Delta}{2}\sin\mu t/\mu\right)$$
 (13)

$$B(n+1,t) = -i\frac{V}{\mu} e^{-i\Delta t/2} \sin \mu t , \qquad (14)$$

with V = $\lambda\sqrt{n+1}$, μ^2 = V² + $\Delta^2/4$ and Δ = Ω - ω . From Eqs. (12)-(14), we obtain the expectation values of the atomic operators:

$$\langle \sigma^- \rangle e^{i\omega t} = \langle \psi(t) | \sigma^- e^{i\omega t} | \psi(t) \rangle$$

$$-\sum_{n=0}^{\infty} F^{*}(n)F(n+1)B^{*}(n+1)A(n+1)$$
 (15)

$$<\sigma_3> -\sum_{n=0}^{\infty} |F(n)|^2 [|A(n)|^2 - |B(n+1)|^2]$$
 (16)

The time evolutions of S_1 and S_2 are calculated for the case of off-resonant excitation with medium strength. The units employed throughout this paper are λ for energy and λ^{-1} for time. The results are presented in Fig. 1. It is observed that σ_1 and σ_2 are squeezed alternatively. Roughly speaking, the squeezing parameters S_1 and S_2 oscillate at about the same frequency but out of phase. A more careful analysis reveals that both are composed of two oscillations with different frequencies. The maximum squeezing in this case is approximately 25% for both S_1 and S_2 .

For the case of on-resonance excitation, $\langle \sigma_1 \rangle$ is zero but its fluctuation is still nonvanishing because of quantum mechanical effects. Figure 2 shows the time evolution of S_2 for the on-resonance excitation by a squeezed and a coherent light field. A comparison of (a) and (b) in Fig. 2 shows that squeezing occurs only for a short time after the interaction is turned on when the initial field is in a coherent state. The maximum squeezings in these cases are, however, about the same, namely, 65% and 68% for the coherent and squeezed excitations, respectively. The role played by

the detuning can be clearly seen by comparing Figs. 1(b) and 2(a). Evidently, a larger detuning implies weaker coupling between the atom and the field and hence less squeezing. Although the results shown are obtained for the same \bar{n} , we have found from our numerical study that in general a larger exciting strength or larger \bar{n} results in stronger squeezing effects.

Next we consider a vacuum initial field in the JC model. The atom is injected into the field in a coherent superposition of excited and ground states, 7

$$|\psi(0)\rangle = e^{i\phi}\cos\theta |-,0\rangle + \sin\theta |+,0\rangle$$
 (17)

From the Hamiltonian (1) and Eq. (17), the state vector at time t > 0 can be written as

$$|\psi(t)\rangle = c_0^-|-,0\rangle + c_1^-|-,1\rangle + c_0^+|+,0\rangle$$
, (18)

where

$$C_1^-(t) = -i\sin\theta\sin\lambda t$$
 (19)

$$C_0^+(t) = \sin\theta \cos\lambda t$$
 (20)

$$C_0^-(r) = e^{i\phi}\cos\theta \quad . \tag{21}$$

Using the same procedure as outlined above, we can write

$$\langle \sigma^{-} \rangle e^{i\omega t} - \langle \psi(t) | \sigma^{-} e^{i\omega t} | \psi(t) \rangle - C_{0}^{-*} C_{0}^{+} - \frac{1}{2} e^{-i\phi} \sin 2\theta \cos \lambda t$$
 (22)

and

$$\langle \sigma_3 \rangle = 1 - 2\sin^2\theta\cos^2\lambda t \quad . \tag{23}$$

Inserting Eqs. (22) and (23) into (8), we find the squeezing parameters as

$$S_1 = (1 - \sin^2 2\theta \cos^2 \phi \cos^2 \lambda t) / |1 - 2\sin^2 \theta \cos^2 \lambda t|$$
, (24)

$$S_2 = (1 - \sin^2 2\theta \sin^2 \phi \cos^2 \lambda t) / |1 - 2\sin^2 \theta \cos^2 \lambda t|$$
 (25)

From these two equations one can see that when the atom starts in a purely excited state, i.e., $\theta=\frac{\pi}{2}$, there is no squeezing effect. It is apparent that maximum squeezing occurs when $\lambda t = k\pi$ $(k=0,1,2,\ldots)$ and $\phi=k\pi$ $(\text{for }\sigma_1)$ or $(k+\frac{1}{2})\pi$ $(\text{for }\sigma_2)$. We have, under these conditions,

$$S_i = (1 - \sin^2 2\theta) / |1 - 2\sin^2 \theta| - |\cos 2\theta|$$
, (26)

where $\theta = \frac{1}{2}(k+\frac{1}{2})\pi$. Equation (20) yields

$$S_{i} = 0$$
 . (27)

This means that the maximum squeezing of 100% is possible.

III. Squeezing in two-photon processes

A simple model for atom-radiation interaction that can be solved analytically has recently been proposed. 7 It involves two-photon Raman

coupling between two atomic states |+> and |-> degenerate in energy. The Hamiltonian for this model is therefore

$$H = M\Omega a^{\dagger} a + M\lambda a^{\dagger} a (\sigma^{-} + \sigma^{+}) , \qquad (28)$$

where we have set the atomic transition frequency to be zero because of the degeneracy. It has been shown that the system has perfect revival. Here we shall study the squeezing of the atomic dipole operator in this model.

We assume that the atom starts in the initial state |+> and the field is in a coherent state $|\alpha>$,

$$\left|\alpha\right\rangle = \sum_{n} G(n) \left|n\right\rangle \tag{29}$$

$$G(n) = \frac{\alpha^n}{\sqrt{n!}} e^{-n/2}$$
 , (30)

where $\bar{n}=|\alpha|^2$ is the initial mean photon number of the field. The initial state vector then takes the form

$$|\psi(0)\rangle = \sum_{n} G(n)|+,n\rangle$$
 (31)

At any time t > 0, the state vector can be written as

$$|\psi(t)\rangle = \sum_{n=0}^{\infty} G(n) [D^{+}(n)|+,n\rangle + D^{-}(n)|-,n\rangle],$$
 (32)

where

$$D^{+}(n,t) = \cos(\lambda nt)$$
 (33a)

$$D(n,t) = -i\sin(\lambda nt) . (33b)$$

From Eqs. (32) and (33), one can easily find the mean value of the atomic dipole moment as

$$\langle \sigma^{-} \rangle = \frac{i}{2} \sum_{n=0}^{\infty} e^{-n} \frac{\overline{n}^{n}}{n!} \sin(2\lambda nt) = \frac{i}{2} \exp\left[-2\overline{n} \sin^{2}(\lambda t)\right] \sin[\overline{n}(\sin 2\lambda t)]$$
(34)

and the inversion

$$\langle \sigma_3 \rangle = \exp(-2\overline{n} \sin^2 \lambda t) \cos(\overline{n} \sin 2\lambda t)$$
 (35)

It is clear that the mean value of the dispersive component for the atomic dipole fluctuates around zero. Hence there is no squeezing in this component. As for the squeezing in the other component σ_2 , we find from Eqs. (8), (34) and (35)

$$S_2 = \frac{1 - \exp(-4\overline{n} \sin^2 \lambda t) \sin^2(\overline{n} \sin 2\lambda t)}{\exp(-2\overline{n} \sin^2 \lambda t) |\cos(\overline{n} \sin 2\lambda t)|}.$$
 (36)

To find the maximum magnitude of squeezing, we may consider the case where $\bar{n}>>1$ but $\bar{n}(\lambda t)^2<<1$. Thus we have

$$S_2 \approx \frac{1 - \left[1 - 4\overline{n}(\lambda t)^2\right] \sin^2(2\overline{n}\lambda t)}{\left|\cos(2\overline{n}\lambda t)\right|}$$

$$= \frac{1 - (1 - \overline{n}^{-1} x) \sin^2 x}{|\cos x|}, \qquad (37)$$

where $x=2\overline{n}\lambda t$. When x is in the vicinity of $\frac{\pi}{2}$, i.e., $x=\frac{\pi}{2}-\epsilon$ with $\frac{1}{n}<<\epsilon<1$, we may expand sinx and cosx in a Taylor series around $\frac{\pi}{2}$ to the second term. Hence, for $\lambda t\approx\frac{\pi}{4}\,\overline{n}^{-1}$ we have

$$S_2 \approx \frac{\pi^2}{4} \left(\overline{n} \epsilon \right)^{-1} \quad . \tag{38}$$

Equation (38) implies that for strong excitation, S₂ is very small and the maximum magnitude of squeezing is nearly 100%.

Acknowledgments

This research was supported in part by the National Science Foundation under Grant CHE-8620274, the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

References

- 1. H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
- 2. D. F. Walls, Nature 306, 141 (1983).
- 3. E. T. Jaynes and F. W. Cummings, Proc. IEEE <u>51</u>, 89 (1963).
- 4. J. H. Eberly, N. B. Narozhny, J. J. Sanches-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).
- 5. P. Meystre and M. S. Zubairy, Phys. Lett. 89A, 390 (1982).
- 6. J. R. Kukliński and J. L. Madajczyk, Phys. Rev. A <u>37</u>, 3175 (1988).
- 7. P. L. Knight, Phys. Scr. <u>T12</u>, 51 (1986).
- 8. G. Compagno, J. S. Peng and F. Persico, Opt. Commun. <u>57</u>, 415 (1986).
- 9. A. S. Shumovsky, F. Le Kien and E. I. Abskenderov, Phys. Lett. <u>124A</u>, 351 (1987).
- 10. S. Y. Zhu, Z. D. Liu and X. S. Li, Phys. Lett. 128A, 89 (1988).
- 11. Z. D. Liu, S. Y. Zhu and X. S. Li, J. Mod. Opt., in press.
- 12. F. L. Li, X. S. Li and D. L. Lin, unpublished.
- 13. D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).
- 14. K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 458 (1985).
- 15. K. Wódkiewicz, P. L. Knight, S. J. Buckle and S. M. Barnett, Phys. Rev. A 35, 2567 (1987).
- 16. X. S. Li, D. L. Lin, T. F. George and Z. D. Liu, Phys. Rev. A, in press.
- 17. N. B. Narozhny, J. J. Sanchez-Mondragon and J. H. Eberly, Phys. Rev. A 23, 236 (1981).
- 18. R. Loudon and P. L. Knight, J. Mod. Opt. 34, 709 (1987).
- 19. G. J. Milburn and D. F. Walls, Phys. Rev. A 27, 392 (1983).

Figure Captions

- 1. Time evolution of the squeezing parameters (a) S_1 and (b) S_2 calculated for the case of off-resonance excitation. The parameters used are \bar{n} = 100, r = 1 and $\Delta = 50$.
- 2. Time evolution of S_2 for the case of on-resonance excitation by a (a) squeezed (r = 1) and (b) coherent (r = 0) field with \bar{n} = 100.

01/1113/86/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies	·	No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 2770	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
	ì	Dr. David L. Nelson Chemistry Division Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	1

Dr. J. E. Jensen Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman Microelectronics Center of North Carolina Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and
Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler Naval Research Laboratory Code 6115 Washington D.C. 20375-5000

Dr. L. Interante Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181

Dr. Irvin Heard Chemistry and Physics Department Lincoln University Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde Department of Chemistry Kansas State University Manhattan, Kansas 66506 Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Or. D. Dilella Chemistry Department George Washington University Washington D.C. 20052

Or. R. Reeves Chemistry Department Renssaeler Polytechnic Institute Troy, New York 12181

Dr. Steven M. George Stanford University Department of Chemistry Stanford, CA 94305

Dr. Mark Johnson Yale University Department of Chemistry New Haven, CT 06511-8118

Dr. W. Knauer Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265

Cr. G. A. Somorjai Department of Chemistry University of California Berkeley, California 94720

Dr. J. Murday Naval Research Laboratory Code 6170 Washington, D.C. 20375-5000

Dr. J. B. Hudson Materials Division Rensselaer Polytechnic Institute Troy, New York 12181

Dr. Theodore E. Madey Surface Chemistry Section Department of Commerce National Bureau of Standards Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne Chemistry Department Northwestern University Evanston, Illinois 60637

Dr. J. M. White Department of Chemistry University of Texas Austin, Texas 78712

Dr. D. E. Harrison Department of Physics Naval Postgraduate School Monterey, California 93940 Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green Quantum Surface Dynamics Branch Code 3817 Naval Weapons Center China Lake, California 93555

Dr. A. Wold Department of Chemistry Brown University Providence, Rhode Island 02912

Dr. S. L. Bernasek Department of Chemistry Princeton University Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. F. Carter Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000

Or. Richard Colton Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Dan Pierce National Bureau of Standards Optical Physics Division Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer Materials Characterization Lab. General Electric Company Schenectady, New York 22217

Dr. Robert Gomer Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637

Dr. Ronald Lee R301 Naval Surface Weapons Center White Oak Silver Spring, Maryland 20910

Dr. Paul Schoen Code 6190 Naval Research Laboratory Washington, D.C. 20375-5000 Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260

Dr. Richard Greene Code 5230 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Or. K. C. Janda University of Pittsburg Chemistry Building Pittsburg, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller Bell Laboratories Murray Hill, New Jersey 07974

Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton 509 5NH UNITED KINGDOM

Dr. H. Tachikawa Chemistry Department Jackson State University Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853

Dr. R. G. Wallis Department of Physics University of California Irvine, California 92664

Dr. D. Ramaker Chemistry Department George Washington University Washington, D.C. 20052

Dr. J. C. Hemminger Chemistry Department University of California Irvine, California 92717

Dr. T. F. George Chemistry Department University of Rochester Rochester, New York 14627

Dr. G. Rubloff IBM Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, New York 10598

Dr. Horia Metiu Chemistry Department University of California Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Or. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser Department of Chemistry University of Richmond Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann Department of Chemistry Cornell University Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, NewYork 12181

Dr. G.H. Morrison Department of Chemistry Cornell University Ithaca. New York 14853